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We propose a general method for modeling transformation paths of multiphase materials such that elastic
moduli can be fitted exactly. The energy landscape obtained in this way is global and automatically enjoys the
correct symmetries. The method is applied to the triple point of zirconia, where tetragonal, orthorhombic
�orthoI�, and monoclinic phases meet. An explicit and relatively simple expression yields a phenomenological
model in the two-dimensional space spanned by a set of order parameters. We also show how to extend this
energy to a fully three-dimensional model with an exact fit of all given elastic moduli.
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I. INTRODUCTION

We propose a method to derive an explicit phenomeno-
logical model of several coexisting stable phases and the
relevant transformation paths. The focus is on solid-solid
phase transitions. A detailed understanding of the transfor-
mation mechanisms is essential both for theory and applica-
tions of phase transitions. In theory, the framework of the
analysis of solid-solid phase transformations is well estab-
lished. Since diffusion and reordering processes are usually
negligible, these materials can be well approximated in the
realm of nonlinear elasticity. In practice, any constitutive
modeling requires an explicit expression for the energy den-
sity. It is remarkable that there are very few explicit energy
densities available for three space dimensions that interpolate
key data such as elastic moduli exactly.

The relative shortage of explicit expressions for energy
functions is even more surprising in the light of the subject’s
long history. The analysis of strain- and temperature-
dependent energy functions was initiated by Landau.1 A
more recent line of investigation based on the Cauchy-Born
hypothesis in continuum mechanics can be traced back to
Ericksen.2 A common method for deriving energy densities is
to expand the energy function in invariant polynomials of the
lowest order and fit as many degrees of freedom as possible
or to obtain a best fit in some error norm. As for the triple
point of zirconia �ZrO2�, when working with an expansion in
invariant polynomials, it requires considerable ingenuity to
obtain a reasonable or good match of most moduli;3 not all
moduli can be fitted this way, let alone further information of
the transformation path. This observation is not surprising
given that polynomials offer little flexibility to control the
energy along �transformation� paths. It has been observed4

that the minimal set of order parameters may lead to unreal-
istically high estimates for the thermal activation energy.
Consequently, to determine the energy barrier correctly, non-
symmetry-breaking order parameters or—more
specifically—invariant polynomials of higher order are em-
ployed in Ref. 4. With the advent of ab initio calculations,
data for the transformation point become available, and it is
thus reasonable to ask for a method that can provide an exact
reproduction of experimental data obtained along the entire

transformation path, including data at the stable phases. With
regard both to the theory and applications of solid phase
transitions, there is a general interest in devising a method-
ology that allows for the integration of experimental data for
multiphase materials into the energy density via a straight-
forward and phenomenological yet natural approach.

To achieve this aim, we propose an intuitive method. The
stable phases are first connected by a path that mimics the
kinematic transformation path �if measurements are avail-
able�. The path is modeled in the space of invariant polyno-
mials so that the correct symmetries are automatically en-
sured. In Fig. 1 �top panel� such a path is visualized for a
material with three stable phases. The wells in the figure
indicate the respective elastic moduli and �0, �1, and �2 are
the symmetry-adapted coordinates we employ to deal with
the crystalline symmetry �see Sec. II C below for details�.
The path is parametrized by a suitable invariant, here �0. We
remark that in general the symmetry-adapted coordinates
may form a collection of manifolds. The framework pre-
sented here allows for, under weak assumptions, a reduction
of this nonlinear setting to a linear one, without loss of gen-
erality. Consequently, the coordinates are visualized as a
plane in Fig. 1. A profile then models the energy along the
path and thus has minima at the stable phases and energy
barriers in between �see Fig. 1 �middle panel��. In addition,
we model the growth of the energy away from the path.
Here, a quadratic growth is chosen, which is sufficient and
keeps the global order low. We first construct at each stable
phase a paraboloid that interpolates the elastic moduli lo-
cally and then interpolate between them along the path. This
interpolation can be interpreted as a continuously deforming
paraboloid that slides along the profile curve and blends one
locally fitted paraboloid into the next �see Fig. 1 �bottom
panel��. A plot of a schematic energy landscape obtained this
way is shown in Fig. 2. In Sec. III we explain why this
ansatz gives enough freedom to fit all elastic moduli exactly.

To demonstrate that this approach is capable of fitting
available data, we consider zirconia as a case study. This
choice is motivated by Gibb’s phase rule, according to which
a one-component system can have at most three phases in
coexistence, namely, at the triple point, which occurs at one
specific combination of pressure and temperature. Thus, a
triple point is the most complicated scenario for single-
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component materials. Zirconia has a triple point with tetrag-
onal, orthorhombic �orthoI�, and monoclinic phases in coex-
istence. While the analysis of phase transformations in
zirconia is of interest for applications such as toughening of
ceramics, the high pressure and temperature at the triple
point render experimental investigations difficult. Numerical
simulations offer an alternative. Yet, they are currently ham-
pered by a lack of a simple energy function that has mini-
mizers only at experimentally observed phases and fits avail-
able experimental data exactly. We give such an expression

in Sec. III C and present some numerical simulations in Sec.
IV.

For the triple point of zirconia, a simple count of the
degrees of freedoms shows that an invariant polynomial of
the lowest order does not offer enough parameters to match
all moduli. Higher-order invariant polynomials provide a the-
oretical remedy for this problem but are rarely used in prac-
tice. One problem is that the calculations for the derivation
become very cumbersome and it can be hard to verify that
higher-order polynomials do not introduce spurious minima.
In addition, the steep growth of higher-order polynomials
often poses a challenge for simulations. At present, the ge-
neric Landau strain-energy function constructed by Truski-
novsky and Zanzotto5 and its augmentation by four new cou-
pling terms to fit experimental data3 seem to be the best
three-dimensional energies for zirconia available. In two
space dimensions, an approach using splines is able to match
all available moduli exactly.6 While the path from the tetrag-
onal phase to an orthorhombic minimum for a polynomial
energy of the lowest order is extremely shallow, splines offer
enough flexibility to model a significant energy barrier.
Straightforward numerical simulations with a spline energy
can capture the corresponding pattern formation, while they
fail to do so for a polynomial energy.6 However, the spline
energy of Ref. 6 itself involves a finite element simulation
and cannot be written down in a simple and concise form; it
is also not evident how to extend it to three dimensions.

The energy of Ref. 6 is continuously differentiable �C1�
and the authors report that no spurious effects stemming
from the discontinuity in the elastic moduli were ever ob-
served in numerical studies of boundary-value problems.
This is in line with other simulations with piecewise defined
C1 energy densities.7 However, we derive here an energy that
is twice continuously differentiable �C2� since the relevant
data involve derivatives up to the second order. Moreover,
the construction could easily be extended to fit an energy
density with an arbitrary degree of smoothness.

The framework proposed in this paper renders the task of
fitting parameters a profoundly simple one. This could sig-
nify that the construction has a deeper physical significance.
Specifically, for a transition characterized by the softening of
a modulus �such as the tetragonal-orthorhombic transition
considered here�, the chosen path seems to capture the soft-
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FIG. 1. Top panel: visualization of the input data in a space of
invariant polynomials of the strain tensor �see Sec. II C�. Here, the
space of invariant polynomials is visualized as a plane. The stable
phases are marked by spheres and the moduli are indicated by qua-
dratic wells around the phases. A transformation path p connecting
the stable phases is indicated as a solid line. It is defined in the
space of invariant polynomials and parametrized by the order pa-
rameter �0. Middle panel: a profile �p �dashed� is defined along the
path. Bottom panel: the growth away from the path is modeled by a
family of paraboloids parametrized by the path so that the given
elastic moduli are interpolated.

FIG. 2. A schematic plot of the final energy landscape.
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ening remarkably well. Polynomials, on the other hand, are
in general too rigid to accurately model a path determined by
a softening direction. Further, a polynomial expansion of the
energy for CuAlNi �Ref. 8� does not match all elastic moduli,
while an approach similar to the one advocated here does
provide a perfect fit for InTl,9 which, such as CuZnAl, can
undergo a cubic-to-monoclinic transition. In general, non-
polynomial energy densities have been found to be a good
approximation for InTl.10

II. RELEVANT DATA FOR ZIRCONIA

A. Transformation paths in zirconia

Zirconia has a triple point near 1.8 GPa and 840 K, where
tetragonal �t�, orthorhombic �o�, and monoclinic �m� phases
meet. A quick review of the crystallographic aspects of these
phases is included here for the reader’s convenience. We
choose the tetragonal phase as the reference configuration
�see Fig. 3 for the relevant primitive tetragonal Bravais lat-
tice�. The lattice is spanned by three mutually orthogonal
basis vectors c1, c2, and c3. It is easy to verify that Rc1

� and
Rc3

�/2 generate the tetragonal point group T3, where Rc
� de-

notes the rotation with an angle � about axis c �only
orientation-preserving symmetry operations are considered
in this paper�. We restrict the crystallographic discussion to
skeletal lattices; a visualization of the movements of the at-
oms inside the skeletal lattices is given in Ref. 3.

There are two orthorhombic and five monoclinic sub-
groups and it can be seen that there are four essentially dif-
ferent t-o-m paths,5 going from the tetragonal phase through
an orthorhombic to a monoclinic phase. Based on the best-
established t-o orientational relationship of the respective
axes and the coordination of O atoms with the Zr atoms, a
transition path has been suggested5 which involves the
monoclinic group M3ª �1,Rc3

� � generated by Rc3

� and the
orthorhombic group O123ª �1,Rc1

� ,Rc2

� ,Rc3

� �. Though alterna-
tive kinematic paths for the phase transformations in zirconia
have been suggested �e.g., Refs. 11 and 12�, we follow Ref.
5 in considering the transformation mechanism

T3 → O123 → M3.

It is known that the bifurcation associated with the transition
T3→O123 originates from the softening of the tetragonal
modulus C11−C12, while the path T3→M3 does not directly
correspond to a softening of a tetragonal modulus.3 This
seems natural in the light of the separation of the tetragonal
and the monoclinic phases by the orthorhombic phase which
makes the T3→M3 transition appear as consecutive bifurca-
tion.

The cubic, tetragonal, and monoclinic phases of ZrO2
have been investigated with lattice dynamics in Ref. 13,
where the phonon vibrations and the density of states for
those phases were determined with the VASP code for
ground-state calculations combined with the direct method
for dynamics.

B. Coordinates of the stable phases

Let y�x� denote the deformation at a point x. The free-
energy density per unit reference volume, henceforth energy
function for short, is a function of the deformation gradient
Fjkª

�yj

�xk
. By frame indifference, the energy function � can

be written as a function of CªFTF or equivalently in terms
of the Green–St. Venant strain tensor Eª

1
2 �FTF− Id�. In Voi-

gt’s notation,

E =�
e1

1

2
e6

1

2
e5

1

2
e6 e2

1

2
e4

1

2
e5

1

2
e4 e3

� ,

with ej �R, j=1, . . . ,6. The energy �=��e1 , . . . ,e6� has to
be invariant under the tetragonal point group T3.

We calculate the position of the t-o-m phases in strain
space for 1.8 GPa and 840 K from the data for the relevant
lattice parameters in Ref. 3. The location of the t-o-m phases
in strain space is listed in Table I.

C. Symmetry constraints

For the t-o-m transition under consideration, a set of order
parameters is given by e1−e2 and e6. Since the transition at

c1

c2
c3

a

a

b

FIG. 3. Tetragonal phase with lattice parameters a and b; c1, c2,
and c3 denote the axes.

TABLE I. The minima in strain space calculated for 1.8 GPa
and 840 K from data for the relevant lattice parameters in the Ap-
pendix of Ref. 3. The data is rounded to the 5th digit.

Tetragonal Orthorhombic Monoclinic

e1 0.0 9.39046�10−3 4.68924�10−2

e2 0.0 −5.39105�10−3 8.50962�10−3

e3 0.0 1.71769�10−2 −5.33516�10−4

e4 0.0 0.0 0.0

e5 0.0 0.0 0.0

e6 0.0 0.0 −3.28543�10−1
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the triple point can be described in terms of the order param-
eters only, we first derive an energy in e1, e2, and e6 and later
augment this energy to an energy that depends on the full
strain tensor. Both for the reduced and the full set of strain
variables, we first identify a suitable basis �a Hilbert basis;
see Sec. II C 1� of polynomials �ª ��0 , . . . ,�n−1�, where
each polynomial depends on the strain variables. We then
construct the energy as a function ���� and finally the en-
ergy in strain space for eª �e1 , . . . ,e6� is ��e�ª����e��.

We remark that the choice of the order parameters in-
volves an assumption. To describe the microscopic deforma-
tion of the lattice in a macroscopic manner, we follow the
conventional assumption that the Cauchy-Born hypothesis
applies; this hypothesis states that the microscopic lattice
deforms according to the macroscopic deformation. Since we
wish to contrast the method presented here with the polyno-
mial expansion going back to Landau, we follow Refs. 3 and
5 and consider order parameters which are functions of the
strain as described above. Since the transformation can be
well described by the deformation of one lattice supercell,
this seems appropriate. The analysis of phase transitions that
cannot be described in this framework is the topic of a future
investigation. Of particular interest in this instance are phase
transitions of multilattices; then, the relative shift of the lat-
tices can take place in a way which violates the Cauchy-Born
hypothesis. Thus, the relevant shift has to be incorporated as
an additional order parameter in the energy.14 While this
complicates the modeling, the principal ideas laid out in this
paper essentially extend to the situation of Ref. 14.

1. Invariants for the Landau contribution

The first step in the construction is to incorporate the sym-
metry constraints of the tetragonal point group. As the order
parameters show, the t-o-m symmetry breaking takes place in
the c1−c2 plane shown in Fig. 3. Thus, we restrict our atten-
tion to the corresponding two-dimensional subspace spanned
by c1 and c2; the strain space is then spanned by the three
strain variables e1, e2, and e6. For this subspace, the three
polynomials

�0�e1,e2,e6� ª �e1 − e2�2,

�1�e1,e2,e6� ª e1 + e2,

�2�e1,e2,e6� ª e6
2 �1�

are invariant under the �restriction of the� tetragonal point
group. In addition, these polynomials have the special prop-
erty that every polynomial �̃ with this invariance can be
written as �̃�e1 ,e2 ,e6�= P��0 ,�1 ,�2� for some polynomial
P. The mathematical background for this statement is given
in Refs. 6 and 15. In a nutshell, by Hilbert’s theorem,16 there
is a basis �0 , . . . ,�n−1 such that every invariant polynomial
can be written as a polynomial of the polynomial basis, and
by Chevalley’s17 theorem, there has to be a basis with n=3
elements for the tetragonal point group. Since the polynomi-
als in Eq. �1� are of lowest degree, they form such a basis.
For us, it is convenient to introduce invariants in the order
parameters e1−e2 and e6, which is why the basis chosen here
differs from the one in Ref. 6.

We observe that any function of the polynomials in Eq.
�1� automatically enjoys the correct symmetry. Points in the
strain space that are mapped to each other under tetragonal
symmetry are mapped by �ª ��0 ,�1 ,�2� to the same point,
while points that are not symmetry related are mapped to
different points by �. The map � is, as �0, �1, and �2 a
function of the strain; it identifies points in the strain space
which are mapped to each other under the symmetry group.
The map � is thus injective on a fundamental domain; one
way of visualizing � is to think of it as a function that maps
the entire strain space to a suitably deformed fundamental
domain. The deformation is such that points on the boundary
of the fundamental domain are identified as appropriate. This
identification facilitates the definition of the energy, as can be
seen in the toy model of the invariance being defined by a
rotation about �

2 in R2; any quadrant is a fundamental do-
main. If one tries to define the energy on a quadrant then one
needs to take into account that points on the boundaries are
identified �mapped to each other under the symmetry group�
in a pairwise manner. This imposes a constraint on the en-
ergy function. The map � would in this case map the model
strain space R2 to the surface of a cone obtained by taking
the fundamental domain �quadrant� and gluing together the
boundaries pointwise �e.g., identifying �x ,0� with �0,x� for
x�R for the quadrant ��x ,y� 	x�0,y�0��. Thus, the con-
straint that points have to be identified disappears when the
map � is applied to the strain space, and the definition of the
energy function simplifies significantly. The image of the
strain space R3 under the map � is called orbit space. Any
function defined in orbit space automatically exhibits the cor-
rect symmetries. Here, the orbit space for the Landau contri-
bution is the quadrant

���0,�1,�2�	�0 � 0, �2 � 0� , �2�

and the position of the stable phases in orbit space is re-
corded in Table II.

2. Invariants in the three-dimensional setting

Analogous to the two-dimensional basis in Eq. �1�, the
eight invariant polynomials

�0�e1, . . . ,e6� ª �e1 − e2�2,

�1�e1, . . . ,e6� ª e1 + e2,

�2�e1, . . . ,e6� ª e6
2,

TABLE II. The location of the minima in orbit space calculated
for the strain data given in Table I. The polynomials �4 , . . . ,�7 in
Eq. �3� as well as �8 and �9 in Eq. �5� vanish at all three phases.
The data is rounded to the 5th digit.

Tetragonal Orthorhombic Monoclinic

�0 0.0 2.18493�10−4 1.47324�10−3

�1 0.0 3.99941�10−3 5.54020�10−2

�2 0.0 0.0 1.07941�10−1

�3 0.0 1.71769�10−2 −5.33516�10−4
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�3�e1, . . . ,e6� ª e3,

�4�e1, . . . ,e6� ª e4
2 + e5

2,

�5�e1, . . . ,e6� ª e4
2e5

2,

�6�e1, . . . ,e6� ª e4e5e6,

�7�e1, . . . ,e6� ª e1e4
2 + e2e5

2 �3�

form a basis in the three-dimensional setting for the full
strain tensor with strain variables e1 , . . . ,e6.

We computed these invariants with the library FINVAR.LIB

of SINGULAR.18 However, tetragonal invariants can also be
read off from the literature.19 In the three-dimensional set-
ting, we employ the same notation and terminology as pre-
sented for the Landau framework in Sec. II C 1.

We remark that it is also possible to work in symmetry-
adapted coordinates, e.g., y1ªe1+e2+e3 to characterize ho-
mogeneous dilations, y2ª

1

6

�e1+e2−2e3�, y3ª
1

2

�e1−e2�,
yjªej for j� �4,5 ,6�. This has been done successfully in
Ref. 3 to simplify the calculations. Yet, in the framework
presented here, it is not less convenient to work directly in
strain coordinates.

III. PATH-PROFILE CONSTRUCTION

A. Concept

The proposed construction relies on three simple ingredi-
ents: a path in the orbit space to model the kinematic trans-
formation path, a profile to model the energy along the path,
and a paraboloid to model the growth away from the path.

The invariance of the energy will be automatically ob-
tained by deriving the energy in the space of invariants, that
is, the image of the strain space under the mapping �
ª ��0 , . . . ,�n−1�; in the two-dimensional Landau setting, we
have n=3 �see Sec. II C 1�, while n=8 in the full three-
dimensional setting �see Sec. II C 2�.

The path must interpolate all stable phases. Here, we se-
lect one order parameter to parametrize the path. Specifically,
we work with �0, though other choices are possible as well.
Since �0 is an order parameter, its evaluations at the tetrag-
onal, orthorhombic, and monoclinic phases are mutually dif-
ferent. The ordering is such that the orthorhombic phase
separates the tetragonal phase on the left from the mono-
clinic phase on the right. We then construct a mapping
� :R→Rn−1 that interpolates the three phases located at ��

= ��0
� , . . . ,�n−1

� � for �� �t ,o ,m� in the sense that ���0
��

= ��1
� , . . . ,�n−1

� �. Note that the n−1 components � j of � can
be modeled independently of each other. The path p can then
be seen either as the graph of the function �, that is, p
ª �(�0 ,���0�) 	�0�R��Rn, or as the zero set of the map-
ping

	:Rn → Rn−1, � � ��i − �i��0��i=1,. . .,n−1,

p= ���Rn 		���= �0, . . . ,0��; then �t ,�o ,�m� p. This path
approximates the kinematic transition path and it would not
be difficult to accommodate any explicit knowledge of the

transformation path such as the position of saddle points of
the energy. For zirconia, no exact data seems to be available
for the kinematic transformation path other than the position
of the stable phases; we thus choose a path that simply in-
terpolates between the stable phases. Some care must be
taken that the path remains within the orbit space ��R3� for
the Landau part, respectively, ��R6� in the three-dimensional
setting. This is since the orbit space is defined by homoge-
neous polynomials, which results in a half-space if the de-
gree is even. For example, the orbit space �2� for the Landau
contribution in Sec. II C 1 is only a quadrant of R3 because
�0 and �2 are polynomials of even degree.

The profile must have global minima at the stable phases,
and without loss of generality, we can choose zero as the
value there. We remark that the method proposed here is also
suited for fitting wells of unequal height, for example, for a
loading experiment. Let �p :R→R0

+ denote the energy along
the path. This profile models the energy barriers �that is,
saddles in the three-dimensional energy landscape� and the
wells along the path p. Figure 1 �middle panel� shows such a
profile construction.

Finally, a paraboloid is employed to model the growth of
the energy away from the transition path. This choice mirrors
the ansatz with invariant polynomials of the lowest order.
Using quadratic functions for this purpose results in the
slowest possible growth of the energy for which the moduli
can be fitted and simultaneously yields the lowest degree
functions of the invariants. In order to fit the moduli of elas-
tic phases at the boundary of the orbit space, we need further
to include a linear contribution in the invariant polynomials
of even degree �cf. the linear behavior in �0 for the stable
phase at the boundary in Fig. 1�. Together with a properly
chosen path and profile, the combination of linear and qua-
dratic contributions allows us to match all prescribed elastic
moduli at given phases exactly. The paraboloid can be
thought of as a lowest-order ansatz to match elastic moduli at
one phase and then modify it continuously along the path so
as to match the moduli at the other phases as well. This is
along a similar vein to a lowest-order polynomial ansatz, but
the sliding paraboloid does not force us to compromise on
the quality of the approximation at some phases. In the ex-
amples discussed below, it is immediately obvious that the
interpolated paraboloid remains positive definite, while the
linear contributions for quadratic invariants are always non-
negative. We denote the paraboloid by H :R→R�n−1���n−1�

with H= �hjk� j,k=1,. . .,n−1 and remark that it suffices to choose
H symmetric hjk=hkj. The linear contribution is denoted

Rn→R0

+.
The energy is then of very simple form, namely,

���� ª �p��0� + 	���TH��0�	��� + 
��� . �4�

We show below that this ansatz gives enough freedom to
match the available data for zirconia. The path, the profile,
and the paraboloid enter as parameters into the fitting process
at the phases.

The specific choice of the terms in Eq. �4� will be influ-
enced by the requirement that the only global minima of �
are at the given phases. Specifically, we ensure that the en-
ergy �̂���ª�p��0�+	���TH��0�	��� without the linear
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term has no other global minima, which is guaranteed by two
observations. On one hand, we take care that the paraboloid
H��0� is always positive definite so that �̂��� is locally de-
creasing in at least one direction at any �� p. On the other
hand, the path p itself is constructed in such a way that it
only has the three prescribed minima. The linear term 
��� is
constructed such that it is non-negative everywhere and van-
ishes at the three phases. We remark that the linear term
deforms the path of the lowest energy. Consequently, the
path p alone does not determine the physical transition path
and the correction by the linear term has to be taken into
account.

B. Two-dimensional Landau energy for zirconia

In the two-dimensional setting in the c1−c2 plane in Sec.
II C 1, the strain variables are e1, e2, and e6. The position of

the three phases with respect to those coordinates is given in
Table I. The invariants �1� then give the location of the
phases in the orbit space ��R3� �see Table II�. Finally, the
moduli we want to reproduce are listed in Table III.

As motivated in Sec. III A, the energy is of the form �4�.
In particular, the path is parametrized by �0 and the image of
the mapping � has to lie in the half-space ���1 ,�2� 	�2�0�.
We construct both components �1 and �2 as piecewise poly-
nomial functions with two quartic and one quintic segment
that join C2 continuously at the orthorhombic and the mono-
clinic phases. Moreover, we constrain the first and second
derivatives of the quintic segment to vanish at �0= 3

2�0
m so

that it can be continued C2 continuously as a constant from
there on �see Fig. 4�. The preimage of the path in strain space
is shown in Fig. 5. The profile �p is defined by five polyno-
mial pieces �quintic, quartic, quartic, quartic, and linear� with
the same knots as the path plus an additional knot halfway
between the orthorhombic and the monoclinic phases that is
used to control the height of this saddle �see Fig. 6�. As for
the sliding paraboloid H= �hjk� j,k=1,2, it turns out that it can be
modeled by a quadratic function h11��0� and constants h12
and h22. Finally, the linear contribution 
 is defined as

���ª
0��0��2, where 
0 is a quartic polynomial between

TABLE III. Elastic constants of the tetragonal and the mono-
clinic phases in GPa. Here, C11, . . . ,C66 are the elastic moduli that
appear in the standard tetragonal elastic tensor �Ref. 20�. The te-
tragonal data is estimated for 1480 K in Ref. 21 �see also Table II of
Ref. 3�. The monoclinic data are given in Ref. 21. To allow for a
direct comparison with Ref. 3, we take the monoclinic data at 1273
K. No experimental data seems to be available for the orthorhombic
phase, which is why we fit the orthorhombic data of Ref. 6. Ortho-
rhombic moduli where no data to be fitted are available are marked
by �. Empty entries are zero by symmetry.

Modulus Tetragonal Orthorhombic Monoclinic

C11 340.0 300.0 312.0

C12 33.0 33.0 35.2

C13 160.0 � 155.0

C16 3.2

C22 =C11 350.0 350.0

C23 =C13 � 171.0

C26 4.3

C33 325.0 � 341.0

C36 9.4

C44 66.0 � 101.0

C45 −13.9

C55 =C44 � 81.6

C66 95.0 90.0 66.3

0.10

0.05

0.5 1.0 1.5 2.52.0 %0¢103

%1,%2

orthorhombic monoclinic

¼1

¼2

0

0.15

FIG. 4. Plots of the path components �1 �solid line� and �2

�dashed line� in the Landau construction.

0
0.02

0.04
0

0.02

0.04

¡0.2

0

0.2

e1

¡0.02
e2

e6

0.4

¡0.02

FIG. 5. Diagram of the paths in strain space �the image of these
paths under � is the path shown in Fig. 4�. The paths emerge at the
tetragonal phase �triangle� in the origin and remain in the e1−e2

plane before bifurcating at the orthorhombic phases �square� in or-
der to reach the monoclinic phases �circle�.

monoclinic

0

1.0

0.01

0.5 1.0 1.5 2.0 %0¢103

Áp+ 0.001

0.001

0.1

orthorhombic

FIG. 6. The profile �p along the path from the tetragonal phase
�left, at the origin� via the orthorhombic phase �middle� to the
monoclinic phase �right�. Since the path is a function of �0= �e1

−e2�2, only non-negative arguments are meaningful.
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the tetragonal and the monoclinic phases that blends C2 con-
tinuously into the zero function at the monoclinic phase. The
energy in Eq. �4� with the prescribed degrees of freedom can
then be fitted to exactly match the available data �see Table
IV for the parameters�.

We call the energy obtained in this way as Landau energy,
since it corresponds to the minimization of all strain param-
eters other than the order parameters of the full three-
dimensional energy.

We remark that in this framework, it is not hard to check
that there are no other local minimizers. To do so, it is not
necessary to verify that the gradient of the energy vanishes in
the interior of the orbit space �though this is possible here
since there are no algebraic dependencies of quantities in-
volved�. Instead, we can argue in a simple manner, since the
energy function is always decreasing in some direction in the
interior of ��R3� �except at the global minimizers, which are
the t-o-m phases�. The same behavior can be verified for the
boundary of the orbit space ���R3� by inspecting the restric-
tion of the energy function to the boundary. The coefficients
shown in Table IV have different orders of magnitude since
the input data values �the position of phases and the moduli�
differ by orders of magnitude �see Tables II and III�. Figure 4
shows that the constructed functions are nevertheless regular
without strong oscillations.

C. Three-dimensional energy function for zirconia

The two-dimensional construction can be extended to the
full three-dimensional setting in a rather straightforward way.

We keep the Landau energy of Sec. III B, here denoted �126,
to indicate its dependence on e1, e2, and e6. Since the ener-
getic contributions to be constructed below contribute to the
moduli with indices 1, 2, and 6, the parameters of the Landau
construction change and their new values are given in Table
V.

We augment �126 additively by a term �456 in e4, e5, and
e6 to fit C44, C55, and C45. Here, we work in strain space,
rather than in orbit space, and employ the invariants �2 and

�8�e1, . . . ,e6� ª e1
2e4

2 + e2
2e5

2,

�9�e1, . . . ,e6� ª �e4
2 + e5

2��1 + e6
2� + 4e4e5e6. �5�

It is easy to verify that �8=�1�7+ 1
4 ��0−�1

2��4 and �9= �1
+�2��4+4�6. The two latter invariants are chosen since they
are non-negative. It turns out that the ansatz

�456 ª �a0 + a1�2��4 + b�8 + c�9 �6�

is sufficient to fit the moduli C44, C45, and C55. This form is
considerably simpler than the contributions defined in orbit
space but possible only because so few moduli need to be
fitted. Since �456 is non-negative, it is easy to verify that
minima exist only at the tetragonal, the orthorhombic, and
the monoclinic phases. The parameters for �456 are given in
Table VI.

To match the elastic moduli involving the strain compo-
nent e3, we employ the path-profile construction with the
four invariants �̃0ª�0, �̃1ª�1+�3, �̃2ª�2, and �̃3ª�3.

TABLE IV. The coefficients of the parameters for the Landau energy. All functions are polynomials of the
form � j� jx

j. For those functions which are defined in a piecewise manner, we list the different polynomial
segments and indicate the parameter range over which they are defined. Here, the first two knots are the �0

coordinates of the orthorhombic and the monoclinic phases r1ª�0
o and r2ª�0

m �see Table II�, and the third
knot is r3ª

3
2�0

m. For the profile �p, we use a fourth knot r1.5ª
1
2�0

o+ 1
2�0

m. All polynomial pieces join C2

continuously at the knots. The data are rounded to the 3rd digit.

Range �1 �2 �3 �4 �5

�1 �0,r1� 0.0 0.0 4.702�105 −2.820�109 4.812�1012

�r1 ,r2� 2.314�10−3 1.904�101 −8.203�104 1.511�108 −5.948�1010

�r2 ,r3� −2.979 7.050�103 −6.282�106 2.664�109 −5.318�1011 3.897�1013

�r3 ,�� 0.04

�2 �0,r1� 0.0

�r1 ,r2� −2.578�10−3 3.676�101 −1.807�105 3.328�108 −1.307�1011

�r2 ,r3� −1.483�101 3.919�104 −4.063�107 2.083�1010 −5.292�1012 5.336�1014

�r3 ,�� 0.09

�p �0,r1� 0.0 7.675�101 0.0 −9.266�109 5.539�1013 −9.307�1016

�r1 ,r1.5� −3.127�10−1 4.613�103 −2.395�107 4.928�1010 −2.887�1013

�r1.5 ,r2� −5.901�101 2.129�105 −2.703�108 1.466�1011 −2.899�1013

�r2 ,r3� −1.581�101 3.759�104 −3.284�107 1.239�1010 −1.683�1012

�r3 ,�� −2.493 1.354�103

h11 9.325�101 −1.995�104 1.276�107

h12 −2.854

h22 7.678�101


0 �0,r2� 4.750�101 1.925�104 −1.705�108 1.454�1011 −3.627�1013

�r2 ,�� 0.0
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Again, we choose the invariant �̃0 for the parametrization of
the path, the profile, and the sliding paraboloid. As for the
latter, it turns out that it suffices to involve only h11, h22, h13,
and h33 and set the other components to zero. Moreover, the
linear contribution 
 is not needed for this energetic contri-
bution that we denote �3 �see Table VII for details�.

An energy that fits exactly all available moduli is then

� ª �126 + �456 + �3 �7�

considered as a function in strain space; that is, the invariants
are evaluated with the strain variables.

An examination of the energy reveals that no global mini-
mizers other than the prescribed ones exist. Local minimizers
could in principle exist due to the addition of three energetic
terms because gradients could cancel out locally. An analysis
of the saddle point via Newton search as in Ref. 9 could be
employed to examine the existence of local minima.

IV. PHYSICAL INTERPRETATION AND NUMERICAL
ILLUSTRATION

One key feature of the approach advocated here is that it
allows the modeling of the lowest-energy path between
stable phases. The conventional polynomial expansion is less
suitable for the description of this transition path. This is
because a polynomial interpolation of several points already
leads in normal circumstances to significant oscillations,
while no such oscillations are expected for a macroscopic
energy density. Since we propose a method that can model

the energy along this low-energy transition path with arbi-
trary precision, the question arises as to how this path can be
determined for arbitrary phase-transforming materials. One
suitable method would be an ab initio calculation, where a
sufficiently large region in the strain space is explored. Such
a sequence of simulations would in principle determine the
path and the elastic moduli along the path, though the detec-
tion of this path in higher space dimensions is far from
trivial. Alternatively, an experiment where a specimen is ex-
posed to forces that trigger a transformation along the path
can then be used to determine the moduli experimentally.
The high temperature and pressure of the triple point, how-
ever, pose a serious challenge for such a sophisticated ex-
periment and we are not aware of such data. The available
measurements for the elastic moduli of the stable phases al-
ready have significant error margins, in particular, for the
off-diagonal moduli; the problem of precise measurements
would be significantly accentuated for the sequence of out-
of-equilibrium measurements of the moduli along the transi-
tion path. In principle, however, such experiments are pos-

TABLE VI. The coefficients of the parameters for �456 defined
in Eq. �6�, which constitutes one contribution to the three-
dimensional energy. The data is rounded to the 5th digit.

a0 2.24230�101

a1 5.86247�101

b 4.56152�103

c 1.05770�101

TABLE V. The coefficients of the parameters for the contribution �126 to the three-dimensional energy.
All functions are polynomials of the form � j� jx

j. For those functions which are defined in a piecewise
manner, we list the different polynomial segments and indicate the parameter range over which they are
defined. The four knots r1, r1.5, r2, and r3 are the same as in Table IV. All polynomial pieces join C2

continuously at the knots. The data is rounded to the 3rd digit.

Range �0 �1 �2 �3 �4 �5

�1 �0,r1� 0.0 0.0 1.898�105 −6.807�108 8.953�1011

�r1 ,r2� −1.653�10−3 3.241�101 −4.747�104 8.815�107 −3.599�1010

�r2 ,r3� 1.768 −5.989�103 7.875�106 −4.935�109 1.485�1012 −1.731�1014

�r3 ,�� 0.04

�2 �0,r1� 0.0

�r1 ,r2� −2.575�10−3 3.672�101 −1.805�105 −3.324�108 −1.305�1011

�r2 ,r3� −1.472�101 3.889�104 −4.030�107 2.065�1010 −5.244�1012 5.284�1014

�r3 ,�� 0.09

�p �0,r1� 0.0 1.325�101 0.0 −1.639�109 9.919�1012 −1.689�1016

�r1 ,r1.5� −3.192�10−1 4.686�103 −2.423�107 4.966�1010 −2.903�1013

�r1.5 ,r2� −5.913�101 2.133�105 −2.708�108 1.469�1011 −2.904�1013

�r2 ,r3� −1.598�101 3.797�104 −3.314�107 1.250�1010 −1.697�1012

�r3 ,�� −2.499 1.357�103

h11 1.325�101 −2.097�104 1.276�107

h12 −2.854

h22 7.562�101


0 �0,r2� 4.750�101 1.925�104 −1.705�108 1.454�1011 −3.627�1013

�r2 ,�� 0.0
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sible since a suitable load transforms a point on the transition
path into an equilibrium configuration.

The energy barriers along the path influence various
physical quantities. For example, the transformation stress
�i.e., the stress required to trigger a stress-induced transfor-
mation� depends on the height of the profile. The reason is
that the energy barrier defined by the profile is on the moun-
tain pass connection between minima, and a mountain pass
connection is the energetically most favorable connection.
The height h of the mountain pass is a function of the energy
barrier and the applied stress. For example, for a spring-
chain model, it can be shown rigorously22 that the transition
is given by the mountain pass, even if there are many pos-
sible ways to transform from one metastable state to another.

We restrict the analysis here to the isothermal situation;
the inclusion of thermal effects is discussed elsewhere.9 In
Ref. 9, the focus is on the influence of stress on the transfor-
mation temperature via the Clausius-Clapeyron equation. We
mention here that the energy barriers influence the depen-
dence of the specific heat on the temperature. For first-order
phase transitions, the temperature dependence of the specific
heat exhibits a sharp peak around the transformation tem-
perature due to the presence of latent heat. The latent heat
released during the transformation is given by the area en-
closed by the hysteresis loop of the transformation; this area
in turn depends on the transformation strain.

While experiments at the high temperature and pressure
of the triple point are very difficult, numerical simulations
offer the possibility to analyze the formation of microstruc-
tures in this regime of particular interest.

One question of interest is the propagation of a phase
front. In the static situation, one would expect different ef-
fects to compete against each other. Namely, on the one
hand, the transition path constructed here is the energetically
favorable path for the transformation of one phase into an-
other. On the other hand, if the two phases form a sharp

interface then this imposes a constraint since the displace-
ment has to be continuous across the interface. It is well
known that this constraint can be expressed as the condition
that the strain gradients of the two phases A and B, say, are
connected by a rank-one line, A−B=a � b with a, b�Rn,23

here with n=2 or n=3. Thus, there is competition between
the energetically favorable transformation path and a transi-
tion along a rank-one line that connects two phases. We in-
vestigate this competition in the presence of dynamics and
interfacial energy. Specifically, we employ the finite element
method to study the behavior of a system consisting of the
Landau energy, a higher gradient surface energy term, and
the kinetic energy. We also add a viscosity term to slowly
relax the system to a stationary point. This leads to the equa-
tion of motion

ü = Div � − 
�2u + ��u̇

for the displacement u=u�x , t�, with coefficients 
 and �
controlling the surface energy and viscosity, respectively.
The divergence of the stress �= ���F�

�F is taken row-wise.

A. Numerical solution method

We use a finite element discretization with basis functions
derived from Loop24 subdivision surfaces, which can be
thought of as a generalization of multivariate splines to tes-
sellations of arbitrary topology. We resort to such a discreti-
zation of C1 smoothness to correctly evaluate the strain gra-
dient energy terms, which contain higher-order derivatives.
The use of subdivision surfaces for this problem has been
suggested in Ref. 25. The simulation employed is very simi-
lar to the one used in Ref. 26 and more information on the
method can be found there. We do, however, use the method
described in Ref. 27 to fix the clamped boundary conditions
�i.e., Dirichlet and natural Neumann boundary data for the
fourth-order initial-boundary-value problem�. A constant af-

TABLE VII. The coefficients of the parameters for the contribution �3 to the three-dimensional energy. All functions are polynomials of
the form � j� jx

j. For those functions which are defined in a piecewise manner, we list the different polynomial segments and indicate the
parameter range over which they are defined. The knots are r1ª�0

o, r2ª�0
m �see Table II�, r3ª1.55�10−3, and r4ª2.21�10−3. All

polynomial pieces join C2 continuously at the knots. The data is rounded to the 2nd digit.

Range �0 �1 �2 �3 �4 �5 �6

�1 �0,r1� 0.0 3.05�102 −1.46�106 2.32�109

�r1 ,�� 2.46�10−2 −3.29�101 8.66�104 −3.41�107

�2 �0,r1� 0.0

�r1 ,r4� −7.83�10−3 1.17�102 −6.30�105 1.42�109 −1.21�1012 4.38�1014 −5.78�1016

�r4 ,�� 8.49�10−2

�3 �0,r1� 0.0 2.28�102 −1.01�106 1.49�109

�r1 ,�� 1.54�10−2 1.73�101 −4.55�104 1.79�107

�p �0,r1� 0.0 6.35�101 0.0 −7.65�109 4.56�1013 −7.66�1016

�r1 ,r3� 5.51�10−3 −6.12�101 2.21�105 −2.90�108 1.60�1011 −3.15�1013

�r3 ,�� −1.43�10−3 9.50�10−1

h11 8.00�101 1.02�103

h13 −7.15

h22 1.16

h33 8.25�101 4.41�103
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fine tilt Ftilt is added to the gradient of u in the computation
to achieve nonzero boundary conditions. In order to advance
the system in time, we use an explicit Newmark scheme. The
computational domain is a square of size one discretized
with 28 293 triangular elements using distmesh.28

B. Computational results

Figure 7 shows the relaxed state of a simulation with tilt

Ftilt
t−o = �4.660 8 − 3.550 5

3.550 5 − 2.715 4

 � 10−3, 
 = 0.4, � = 0.1.

This tilt has been chosen since it is located on a rank-1 con-
nection, exactly halfway between the tetragonal and an
orthorhombic minimum. Therefore, the microstructure dis-
played in Fig. 7, alternating between the two minima, devel-
ops. As expected, the lamination occurs approximately
across the habit plane of the system.

Since the main thrust of this paper is the derivation of an
explicit expression of the potential energy at the triple point,
we contrast the numerical findings with those for the setting
where the potential energy is given as a lowest-order poly-
nomial expansion. Figure 8 displays the result of a simula-
tion with the energy presented here replaced by the conven-
tional polynomial Landau expansion. The parameters in this
simulation are

Ftilt
t−o = � 3.576 8 3.602 7

− 3.602 7 − 3.628 7

 � 10−3, 
 = 0.4, � = 0.1.

We take the energy from Ref. 3 restricted to the e1−e2−e6
plane and evaluated at the triple point temperature �840 K�
and pressure �1.8 GPa�. This energy uses a slightly different
two-dimensional reduction in the system; therefore the
minima are at slightly different positions. Again, there is a
mountain pass, that is, a transformation path. It turns out that
the energy is essentially flat along the path between the
minima, with an extremely low-energy barrier. In other
words, the conventional polynomial expansion yields an un-
realistic estimate of the energy barrier, unlike the method
presented here. Consequently, for this polynomial energy,
there is no clear distinction between the orthorhombic and
tetragonal phases in the simulation, even though the affine
tilt was again chosen to be exactly halfway in between the
tetragonal and an orthorhombic minima on a rank-one con-
nection. The surface energy and the viscosity are the same as
in the previous simulation. The simulation result is shown in
Fig. 8. The two phases in the polynomial energy would lie at
�0=0.0 �tetragonal� and �0=2.076 7�10−4 �orthorhombic�,
respectively.

In Fig. 9, the relaxed state of a simulation with tilt

Ftilt
t−m = � 1.011 0 � 10−2 − 1.613 5 � 10−1

− 6.009 5 � 10−4 − 8.881 1 � 10−3 
,


 = 0.4, � = 0.1

is presented. The value for Ftilt
t−m lies exactly halfway between

the tetragonal and a monoclinic minimum on a rank-1 con-
nection between the two. The arrangement of phases in the
resulting picture is complex due to a strong influence of the
boundary. One can observe, however, that there are separate
regions where the strain is close to the tetragonal or ortho-
rhombic phase and close to the monoclinic phase, respec-
tively.

FIG. 7. Results of the simulation for a tetragonal-orthorhombic
phase boundary. Initial values and boundary values are on a rank 1
connection in between the two minima. The top panel shows the
elastic energy density ����x��; the bottom panel shows the clear
distinction between the two phases in the order parameter �0.

FIG. 8. Simulation using the same parameters as in Fig. 7 but
employing the polynomial energy landscape from Ref. 3. Shown is
the order parameter �0, as in the bottom panel of Fig. 7. No clear
distinction between the phases can be observed �note that the scal-
ing of the order parameter is 10−5, so the variation is 2 orders of
magnitude smaller�.
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These results show that the energy landscape constructed
here is very well suited for use in finite element codes.

V. DISCUSSION

With regard both to the theory and applications of solid
phase transitions, there is a general interest in devising a
methodology that allows for the integration of experimental
data for multiphase materials into an energy density via a
straightforward and phenomenological yet natural approach.
Here, we propose the path-profile construction. The intuition
behind this method is the observation that a good phenom-
enological description of the energy landscape needs to de-
scribe the local properties of the stable phases correctly and
has to offer a phenomenologically appropriate transformation
path. The classical approach with invariant polynomials is
well suited for the former but not for the latter. We develop a
method to model a phenomenological transformation path
such that local properties can be fitted with relative ease. The
approach has recently been used in a less explicit fashion to

model one contribution to an energy for InTl.9 Here, we
demonstrate the simplicity of the method by choosing a ma-
terial with a triple point. We first derive the Landau contri-
bution, which only relies on order parameters, and apply the
path-profile construction. The energy as a function of the
three-dimensional strain tensor is then obtained via exten-
sion.

The approach proposed here is general, even if the spe-
cific examples are genuine for zirconia. We noticed that the
process of fitting is remarkably easy, since the construction
with the sliding paraboloid greatly facilitates the process.
The calculations for the fitting process were done in MAPLE,
where a straightforward implementation requires at most a
few seconds to complete on a personal computer.

It is possible to construct the energy entirely in the orbit
space rather than composing it from three different terms, as
is the case here. Although the approach to work in the full
orbit space may be more elegant and ultimately more
straightforward, some technical aspects remain to be over-
come. Namely, it becomes more difficult to rule out minima
on the boundary. This matter will be the topic of a future
investigation. Also, it is not evident which set of invariants
should be chosen. In the low-dimensional approach, as ad-
vocated here, it is easy to test and compare different choices,
while the analogous procedure becomes much more involved
when the number of invariants involved is increased.

It has been noted that using a lowest-order polynomial as
the Gibbs energy density necessarily introduces a second
orthorhombic phase for which experimental evidence seems
to be unavailable.3 While this phase is stable at zero pressure
only for a small range of temperatures above 1520 K and
becomes unstable for pressure over 1.35 GPa,3 it has been
shown to be the most stable phase for the polynomial energy
under various shear loads at room conditions.29 Since the
existence of this phase may have implications on zirconia as
a toughening agent near crack tips, it seems desirable to ex-
amine whether other energy densities also predict this phase.
The present isothermal energy density may serve as a basis
for such investigations.
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FIG. 9. Elastic energy density �top panel� and order parameter
�0 �bottom panel� of the fully relaxed state of a simulation with
initial and boundary conditions on a rank-1 connection in between
the tetragonal and the monoclinic minima of the energy. A complex
arrangement of phases has formed, with boundaries of higher en-
ergy in between.
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